MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Question	Answer	Marks
1(a)	Platinum and platinum	1
1(b)(i)	M1: Nernst quoted correctly $E=E^{\ominus}+0.0590 / \text { zlog }[\mathrm{ox}] /[\mathrm{red}] \text { or } E=1.49+0.0590 \log 5$ M2: (+)1.53 V minimum 2 sig. fig. Correct answer scores 2 marks	2
1(b)(ii)	$+/-0.46$ minimum 2 sig. fig.	1
1(b)(iii)	M1: $\mathrm{Mn}^{3+}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Br}_{2}$ $\text { M2: } 2 \mathrm{Mn}^{3+}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Br}_{2}$	2
1(c)	M1: 16200 C M2: 1.0125×10^{23} electrons (use of 1.60×10^{-19}) M3: 0.0802 moles of copper (use of 5.09 and 63.5) M4: 0.1603 moles electrons M5: L = 6.32×10^{23} (correct answer [5] other approaches acceptable including: M1: 16200 C M2: 1.0125×10^{23} electrons (use of 1.60×10^{-19}) M3: 5.0625×10^{22} copper atoms M4: 0.0802 moles of copper (use of 5.09 and 63.5) M5: L = 6.32×10^{23} (correct answer [5])	5
1(d)	M1: $\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg} E^{\ominus}=-2.38$ and $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} E^{\ominus}=0.00$ M2: hydrogen produced instead / hydrogen easier to reduce / hydrogen preferentially reduced / hydrogen has more positive E°	2

Question	Answer	Marks
2(a)	M1: the time taken for the amount/concentration or a reactant to halve M2: the slowest step	2
2(b)	- Use an excess of $\mathrm{CH}_{3} \mathrm{Br}$ - (Several experiments with) different initial [OH] - control / equilibrate temperatures - measure time - find $\left[\mathrm{OH}^{-}\right]$by sample and titrate or use of pH probe or find $\left[\mathrm{Br}^{-}\right]$by sample and reference to use of Ag^{+}. - processing of results - plot graph of $\left[\mathrm{OH}^{-}\right]$vs rate or evaluate rate is proportional to $\left[\mathrm{OH}^{-}\right]$numerically Alternative approach: - Use an excess of $\mathrm{CH}_{3} \mathrm{Br}$ - One experiment with known initial $\left[\mathrm{OH}^{-}\right]$ - control / equilibrate temperatures - measure time - find $\left[\mathrm{OH}^{-}\right]$by sample and titrate or use of pH probe or find $\left[\mathrm{Br}^{-}\right]$by sample and reference to use of Ag^{+}and describes how to calculate $\left[\mathrm{OH}^{-}\right]$. - processing of results - plot graph of $\left[\mathrm{OH}^{-}\right]$vs time and look for constant half-life Award 1 mark for each correctly identified point.	4

Question	Answer	Marks
2(c)	M1: rate $=\mathrm{k}[$ ester $]\left[\mathrm{OH}^{-}\right]$	3
	M2: value of $\mathrm{k}=0.206$	
M3: units mol $^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$		

Question	Answer	Marks
3(a)(i)	1.3×10^{-5}	1
3(a)(ii)	M1: K_{a} expression used correctly and $K_{\mathrm{a}}=5.5(3) \times 10^{-10}$ M2: $\mathrm{p} K_{\mathrm{a}}=9.26$ Award 2 marks for correct answer	2
3(b)(i)	$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}{ }^{+}$	1
3(b)(ii)	$\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ and reference to expression in Q shifting R	1
3(c)(i)	$\begin{aligned} & \text { quotes } K_{\mathrm{w}}=1 \times 10^{-14} \text { or } 1 \times 10^{-1}\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\ & {\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}} \end{aligned}$	1
3(c)(ii)	M1: $\left[\mathrm{H}^{+}\right]=2.3 \times 10^{-7} \quad$ (calculator value 2.290867×10^{-7}) and $K_{\mathrm{w}}=\left[2.3 \times 10^{-7}\right]^{2}$ M2: $K_{w}=5.2 \times 10^{-14} \quad$ calculator 5.248074×10^{-14} Award 2 marks for correct answer	2

Question	Answer	Marks
4(a)	M1: correct use of stoichiometry M2: answer + 189	$\mathbf{2}$
4(b)	M1: States or uses correct form of Gibbs equation $\Delta G=\Delta H-T \Delta S$ M2: appreciates / includes $\Delta G=0$ at temperature required M3: uses 1000 correctly and answer +624(.339) Award 3 marks for correct answer	$\mathbf{3}$
4(c)	negative and decrease in number / amount of gas molecules	

Question	Answer	Marks
5(a)	M1: Mg - white flame and Sr - red flame M2: white solid product once	2
5(b)(i)	M1: 2 Ca (s) $+\mathrm{O}_{2}$ (g) $\rightarrow 2 \mathrm{CaO}$ (s) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}$ (s) $+\mathrm{CO}_{2}(\mathrm{~g})$ all substances, balanced M2: all state symbols	2
5(b)(ii)	neutralises acid / raises pH	1
5(b)(iii)	M1: $\Delta H_{\text {lat }}$ and $\Delta H_{\text {hyd }}$ decrease down group M2: $\Delta H_{\text {lat }}$ decreases / changes more M3: $\Delta H_{\text {sol }}$ becomes more exo / more -ve / less endo / less +ve	3

Question	Answer	Marks
5(c)	$\bullet \quad$ no change (for hydroxide)/ colourless solution	
	$\bullet \quad$ white (for sulfate)	
	Award 1 mark for two points, award 2 marks for all three points	
5(d)	M1: stability increases / higher T needed for decompose M2: larger ionic radius M3: harder to distort / polarise anion / carbonate ion or harder to polarise / weaken C-O or C=O bond.	$\mathbf{3}$

Question			Answer	Marks
6(a)	donates one pair of electrons / forms one coordinate bond			1
6(b)	Reagent added to a solution of $\mathrm{CuSO}_{4}(\mathrm{aq})$	Observations	Formula of the copper(II) compound or complex ion that is formed	4
	a few drops of dilute ammonia	blue ppt	$\mathrm{Cu}(\mathrm{OH})_{2}$ or $\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$	
	an excess of dilute ammonia	deep blue solution	$\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \text { or }} \\ & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}} \end{aligned}$	
	an excess of aqueous sodium hydroxide	blue ppt	$\mathrm{Cu}(\mathrm{OH})_{2}$ or $\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$	
	an excess of conc HCl .	green-yellow / yellow-green / yellow	$\left[\mathrm{CuCl}_{4}\right]^{2-}$	
	Award 1 mark for each correct observation and formula in a row of the table.			

Question	Answer	Marks
6(c)	- ligand exchange - magnitude of d-orbital splitting changes / $\Delta \mathrm{E}$ for d-orbitals changes / energy gap between d-orbitals changes - change in colour / frequency / wavelength of light absorbed - electrons are promoted/excited to higher d Award 1 mark for two points, award 2 marks for three points, award 3 marks for all four points	3
6(d)	M1: E^{\ominus} values 1.36 and 0.77 quoted M2: $2 \mathrm{FeSO}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{2} \mathrm{Cl}_{2}$ or $2 \mathrm{Fe}^{2+}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{Cl}^{-}$	2
6(e)(i)	$\left.\left[\left[\mathrm{FeCl}_{4}\right]^{-}\right] /\left[\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right][\mathrm{Cl}]^{-}\right]^{4}$	1
6(e)(ii)	0.078(125)	1

Question	Answer	Marks
7(a)(i)	- two or more repeat units - correct orientation of groups on all four rings and rings correct - trailing bonds shown - amide links all correct Award 1 mark for two points, award 2 marks for all four points	2
7(a)(ii)	polyamide and condensation	1
7(a)(iii)	yes and can be hydrolysed	1
7(a)(iv)	PCl_{3} or PCl_{5} or SOCl_{2}	1
7(a)(v)	M1: conc nitric acid + conc sulfuric acid M2: $\mathrm{Sn}+\mathrm{HCl}$	2

Question	Answer	Marks
7 (b)(i)	M1: sequence / order of amino acids M2: α-helix or β-sheet M3: folding of chain or 3-D shape	$\mathbf{3}$
7 (b)(ii)	covalent bonds / peptide bonds / amide bonds	
7(b)(iii)	M1: hydrogen bonds M2: between C=O and $N-H$	$\mathbf{1}$

Question	Answer	Marks
8(a)	bromine / Br_{2} and uv / light/ heat	1
8(b)	1,1-dibromoethane	1
8(c)	$\mathrm{NCCH}_{2} \mathrm{CH}_{2} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{CNCH}_{2} \mathrm{CN}$	1
8(d)	M1: KCN / NaCN / CN- M2: boil/heat/reflux and ethanol as solvent	2
8(e)(i)	acidified manganate(VII) or dichromate(VI)	1
8(e)(ii)	carbon dioxide and water	1

Question	Answer	Marks
8(f)	M1: most acidic: hexanoic acid > phenol > hexan-1-ol :least acidic - the other O atom in $\mathrm{CO}_{2} \mathrm{H}$ group of hexanoic acid either - withdraws charge from OH group or is electronegative and weakens $\mathrm{O}-\mathrm{H}$ bond or - stabilises resultant anion/negative ion/- CO_{2}^{-}group/carboxylate ion - benzene / aromatic / $\mathrm{C}_{6} \mathrm{H}_{5}$ ring in phenol delocalises either - lone pair on O atom and weakens $\mathrm{O}-\mathrm{H}$ bond or - Ione pair on resultant anion/negative ion / phenoxide ion this stabilises resultant anion negative ion $/-\mathrm{CO}_{2}{ }^{-}$ group/carboxylate ion - the alkyl group in hexan-1-ol donates electrons this strengthens $\mathrm{O}-\mathrm{H}$ bond Award 1 mark for each bullet point identified.	3
8(g)(i)	M1: $\delta 12.7$ is COOH M2: $\delta 3.3$ is CH and $\delta 1.1$ is CH_{3}	2
8(g)(ii)	quadruplet/quartet 3 H / protons on neighbouring / adjacent carbon / carbons / C	1
8(g)(iii)	2 (butanedioic acid) and 3 (methylpropanedioic acid)	1

Question	Answer	Marks
$9(\mathrm{a})$ (i)	10	$\mathbf{1}$
9 (a)(ii)	120	$\mathbf{1}$
$9(\mathrm{~b})$ (i)	correct acid chloride	$\mathbf{1}$
$9(\mathrm{~b})(\mathrm{ii)}$	NH_{3} or ammonia	$\mathbf{1}$

Question	Answer	Marks
9(c)	M1: $\left(\mathrm{C}_{5} \mathrm{NH}_{4}\right) \mathrm{COOH}$ or $\left(\mathrm{C}_{5} \mathrm{NH}_{5}\right)^{+} \mathrm{COOH}$ M2: $\left(\mathrm{C}_{5} \mathrm{NH}_{4}\right) \mathrm{COO}^{-}\left(\mathrm{Na}^{+}\right)$or $\left(\mathrm{C}_{5} \mathrm{NH}_{4}\right) \mathrm{COONa}$	2
9(d)(i)	$\mathrm{LiA} / \mathrm{H}_{4}$	1
9(d)(ii)	M1: most basic: $\mathrm{X}>$ phenylamine $>$ nicotinamide :least basic M2: LP in X cannot be delocalised M3: LP in phenylamine delocalised over the benzene ring or LP in amide delocalised (more effectively) by $\mathrm{C}=\mathrm{O}$	3
9(e)	M1: $M+1 / M=(1.1 \times ?) / 100$ M2: Ans 5.28 Award 2 marks for correct answer	2

